BDNF-exercise interactions in the recovery of symmetrical stepping after a cervical hemisection in rats.
نویسندگان
چکیده
Clinical evidence indicates that motor training facilitates functional recovery after a spinal cord injury (SCI). Brain-derived neurotrophic factor (BDNF) is a powerful synaptic facilitator and likely plays a key role in motor and sensory functions. Spinal cord hemisection decreases the levels of BDNF below the injury site, and exercise can counteract this decrease [Ying Z, Roy RR, Edgerton VR, Gomez-Pinilla F (2005) Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury. Exp Neurol 193:411-419]. It is not clear, however, whether the exercise-induced increases in BDNF play a role in mediating the recovery of locomotion after a SCI. We performed a lateral cervical ( approximately C4) hemisection in adult rats. Seven days after hemisection, the BDNF inhibitor trkB IgG was injected into the cervical spinal cord below the lesion ( approximately C5-C6). Half of the rats were exposed to voluntary running wheels for 14 days. Locomotor ability was assessed by determining the symmetry between the contralateral (unaffected) vs. the ipsilateral (affected) forelimb at the most optimum treadmill speed for each rat. Sedentary and exercised rats with BDNF inhibition showed a higher level of asymmetry during the treadmill locomotion test than rats not treated with the BDNF inhibitor. In hemisected rats, exercise normalized the levels of molecules important for synaptic function, such as cyclic AMP response element binding protein (CREB) and synapsin I, in the ipsilateral cervical enlargement, whereas the BDNF blocker lessened these exercise-associated effects. The results indicate that BDNF levels play an important role in shaping the synaptic plasticity and in defining the level of recovery of locomotor performance after a SCI.
منابع مشابه
Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury.
We have conducted studies to determine the potential of exercise to benefit the injured spinal cord using neurotrophins. Adult rats were randomly assigned to one of three groups: (1) intact control (Con); (2) sedentary, hemisected at a mid-thoracic level (Sed-Hx), or (3) exercised, hemisected (Ex-Hx). One week after surgery, the Ex-Hx rats were exposed to voluntary running wheels for 3, 7, or 2...
متن کاملThe Effects of High-Intensity Interval Training with Supplementation of Flaxseed Oil on BDNF mRNA Expression and Pain Feeling in Male Rats
Background. It seems that based on the independent effects of physical activity and flax oil on pain, it is possible the interactions of these two effects reduces or mitigate the impact of pain or strengthen it. Objectives. This study investigates the effect of high-intensity interval training and flaxseed oil supplementation on hippocampal BDNF expression and pain feeling in male rats. M...
متن کاملThe Effect of 8 Weeks of Concurrent Training on BDNF Values of Brain Hippocampus, Cognitive Function, Blood Glucose and Insulin in Streptozotocin-Induced Diabetic Rats
Background: BDNF protein is the important neurotrophin that is involved in cognitive function. Diabetes can lead to impaired function and is a neurocognitive disorder's factor in hippocampus. Therefore, the purpose of this study was to evaluate the effect of 8 weeks of concurrent training on BDNF levels in the brain hippocampus and cognitive function of streptozotocin-induced diabetic rats. Me...
متن کاملTransplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury.
Transplants of fibroblasts genetically modified to express BDNF (Fb/BDNF) have been shown to promote regeneration of rubrospinal axons and recovery of forelimb function when placed acutely into the injured cervical spinal cord of adult rats. Here we investigated whether Fb/BDNF cells could stimulate supraspinal axon regeneration and recovery after chronic (4 week) injury. Adult female Sprague-D...
متن کاملTransplantation of genetically modified fibroblasts expressing BDNF in adult rats with a subtotal hemisection improves specific motor and sensory functions.
OBJECTIVE We have previously reported that grafting fibroblasts genetically modified to express brain-derived neurotrophic factor (BDNF) into a subtotal cervical hemisection site that destroys the entire lateral funiculus will promote regeneration of rubrospinal axons and growth of other axons, prevent atrophy and death of axotomized red nucleus neurons, and improve forelimb use during spontane...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience
دوره 155 4 شماره
صفحات -
تاریخ انتشار 2008